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1 Introduction and description of the model
In this problem, we are asked to estimate the optimal path which minimizes the time taken
for a player to go through all four bases and analyze the nature of our solution. Some basic
constraints will have to be always satisfied : 1) the runner start on base 1 and has a zero
initial velocity. 2) During the path, the maximum acceleration is limited to 10 feet/sec.
3) The distance between two bases is 90 feet. We will also consider the bases’ order as
showed on the figure. As it is almost impossible to deal with the real continuous problem,
we will approximate it by solving a discrete time model: (t1.....tn) : this means that we will
consider

all the physical parameters as a constant number between two instant of time : ti and ti+1. For example instead of a
continuous real function a(t), we will describe the acceleration as a series of real numbers a1, . . . , an−1 which all have
to satisfy the general constraint on the acceleration. Thus the variables (acceleration, speed, distance) are presented by
(ai,vi,si) with subscript i = 1 . . . n.

2 Modeling
We are working in a two dimension problem, it is then natural to decompose
all physical variables that are vectors, in their x and y composants. This
enables us to work with real numbers instead of vectors : in our model we
will consider that one side of the baseball ground concide with the axe x, this
doesn’t change anything to the solution.

We will divide our problem in 4 subproblems : one subproblem per segment.
Thus four time variables (T1, T2, T3, T4) are added to represent the time taken
between two adjacent bases (T4 represents the time to come back at base 0
from base 3). Following the idea evoked in the introduction, we will consider
n− 1 discretization points for each subproblems. Thus each adjacent points of
subproblem i are separated by a time tstep

i = Ti

(n−1) . To summarize, we get a
series (t1.....t4n−3) as time variables, and we want to minimize :

fobj := t4n−3 = T =
∑

i

Ti

For each discretization point Pj correspond values for acceleration aj = a(tj), velocity vj = v(tj) and displacement
sj = s(tj). As we have mentioned in the introduction some basic constraints must be satisfied1 :

Initial velocity vx(t1) = vy(t1) = 0
Limited acceleration ∀j : a2

x(tj) + a2
y(tj) ≤ 102

Bases (sx(tn), sy(tn)) = (90, 0) (sx(t2n−1), sy(t2n−1)) = (90, 90)
(sx(t3n−2), sy(t3n−2)) = (0, 90) (sx(t4n−3), sy(t4n−3)) = (0, 0)

In order to reduce the number of variables of our model we will only keep velocity variables. It is easy to express
acceleration and distance in terms of velocity based on the fact that a(t) = ∆v/∆t and that s(t) = s0 + v0 ∗ t + a0∗t2

2 . For
example, if we consider the discretization P (tj) where tj ∈ [tn, t2n−1] , the variables are :

ax, j = vx, j+1 − vx, j

tstep
2

sx, j = sx, j−1 + vx, j−1 ∗ tstep
2 + ax, j−1

2 ∗ (tstep
2 )2 = sx, j−1 + vx, j−1 ∗ tstep

2 + vx, j − vx, j−1

2 ∗ tstep
2

∗ (tstep
2 )2

= sx, j−1 + (vx, j−1 + vx, j) ∗ tstep
2
2

= sx, tn + (vx, tn + vx, j) ∗ tstep
2
2 + tstep

2 ∗
j−1∑

k=tn+1

vx, k

1We have to mention that with our discretization we have that : T1 = tn, T1 +T2 = t2n−1, T1 +T2 +T3 = t3n−2 and T1 +T2 +T3 +T4 = t4n−3
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The previous constraints become then :

Initial velocity vx(t1) = vy(t1) = 0
Limited acceleration ∀tj ∈ subproblemi : (vx, j+1 − vx, j)2 + (vy, j+1 − vy, j)2 ≤ 102 · (tstep

i )2

Bases (sx(tn), sy(tn)) = (90, 0) (sx(t2n−1), sy(t2n−1)) = (90, 90)
(sx(t3n−2), sy(t3n−2)) = (0, 90) (sx(t4n−3), sy(t4n−3)) = (0, 0)

where :

sx(tn) = sx, t1 + tstep
1
2 ∗ (vx, t1 + vx, tn

) + tstep
1 ∗

tn−1∑
k=2

vx, k = tstep
1 ·

(
0.5 · vx, tn

+
tn−1∑
k=2

vx, k

)

sx(t2n−1) = sx, tn
+ tstep

2
2 · (vx, tn

+ vx, t2n−1) + tstep
2 ∗

t2n−2∑
k=tn+1

vx, k

...

sy(t4n−3) = sx, t3n−2 + tstep
4
2 · (vx, t3n−2 + vx, t4n−3) + tstep

4 ∗
t4n−4∑

k=t3n−1

vx, k

To add some realism to the model, we will consider some additional constraints :

1) a maximum velocity for the runner
2) a inferior maximum value for deceleration than for acceleration (dmax ≤ amax)
3) the 3 feet rule : a players can not go further than 3 feet from the lines of the square
formed by the bases.

Again all theses constraints can be written as an expression of the 8n − 2 variables that
follows : (T1, T2, T3, T4, vx,1 . . . vx,4n−3, vy,1 . . . vy,4n−3) :

Limited velocity ∀tj v2
y, j + v2

y, j ≤ v2
max

Limited acceleration if ||vj+1|| > ||vj|| : ∀tj ∈ subproblemi : (vx, j+1 − vx, j)2 + (vy, j+1 − vy, j)2 ≤ a2
max · (t

step
i )2

Limited deceleration if ||vj+1|| > ||vj|| : ∀tj ∈ subproblemi : (vx, j+1 − vx, j)2 + (vy, j+1 − vy, j)2 ≤ d2
max · (t

step
i )2

3 feet Subprob 1: − 3 ≤ sx,i ≤ 93 and− 3 ≤ sy,i ≤ 3 Subprob 2: 87 ≤ sx,i ≤ 93 and− 3 ≤ sy,i ≤ 93
Subprob 3: − 3 ≤ sx,i ≤ 93 and 87 ≤ sy,i ≤ 93 Subprob 4: − 3 ≤ sx,i ≤ 3 and− 3 ≤ sy,i ≤ 93

3 Analysis of the model
3.1 Study of convexity
Even though the description of the constraints is simple, those are not necessarily linear or convex. For example the
limited acceleration constraint (vx,i+1−vx,i)2

4t2
1

+ (vy,i+1−vy,i)2

4t2
1

≤ 100 is not convex . Indeed let f(x,y,t)= (x−y)2

t2 , we will study
the convexity of function f by giving the Hermitian matrix.

4f =

 2
t2 − 2

t2
4x
t3

− 2
t2

2
t2

4y
t3

4x
t3

4y
t3

6(x−y)2

t4


Unfortunately, it is not a defined positive matrix (ex: x = y = 10, t = 0.5, we have an eigenvalue -8.4853). In the same
way, we can prove that the bases constraints are also not convex, thus our model is not convex. We can then not affirm
that the solution given with AMPL is a global optimal solution, even for the discretize model. All solutions are local
optimum and can be a global one but it is not guarentee. Thus all solutions given by AMPL are upper bound of the
optimal solution if there exits one.
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3.2 Convergence to the optimal solution
When the number of discretization points n tends to infinite, the optimal solution of our simplified model converge
to the real optimal value. We note Tp the optimal real time taken to run along a certain path p. For n fixed, Tp(n)
represents the time taken by a discrete path with n discretization points for each subproblems. We suppose that there is
convergence(which can be mathematically proved), we have that :

Tp = lim
n→∞

Tp(n) = min
n

Tp(n)

Actually, every Tp(n) is an upper bound of the optimal value because all discretize path are physically realizable : our
player will have a constant acceleration between tj and tj+1.

3.3 Lower Bound

We will give two different lower bounds in this section :

1) If the player has to run 90 · 4=360 feet on a straight line with an acceleration limited
to 10 feet/s2, he will take at least 8.4853 seconds. Using the fact that sx = amaxt2

2 .
2) The path projected on the x axis can be represented in three periods : a → b, b → c,

c→ a where a = (0, 0), b = (s, 0) and c = (−s, 0) with s= 90√
2 .

We assume that at the end of the first period the player should arrive at point b with a zero-speed : if he arrives at b
with a positive speed, he will go farther than b and that can’t be a optimal solution. The optimal path is to accelerate
at amax from point a until the middle point (s/2, 0) and then decelerate to point b. Let t1 be the time for the player to
reach the middle point. It takes exactly the same time for the player to reach point b from the middle point. Thus we
have 0.5 · amaxt2

1 + 0.5 · amaxt2
1 = s, where amax = 10. We get t1 = 2.52 seconds so ta→b = 2t1. Using the same method

for b→ c we get t2 = 3.57 seconds and tb→c = 2t2. Finally for c→ a, it is logical to always accelerate without decelerate
: we get then tc→a = 3.57 seconds. Putting all together gives us a lower bound equal to 15.54 seconds.

4 Analysis of the results

Trajectory with maximum accelaration
Trajectory with maximum accelaration and velocity
Trajectory with maximum accelaration,velocity and decelation
Trajectory with maximum accelaration,velocity, decelation and the 3 feet rule

In our model will consider the following set of parameters :
amax = 10 fs−2, dmax = 8 fs−2 and vmax = 30 fs−1.

First of all, we can remark that the trajectory with only a maximum
acceleration is very close from the path given in the reference. As the
intuition would have told us, to go the faster as possible, the runner
has to adopt a curve trajectory. With n = 100 discretization points
per subproblem, we get a optimal value of T = 16.5793 seconds. We
beat then by 0.13 seconds the affirmation of the reference.

We are all humans, but we are not all Usain Bolt who has a maximum
speed of 40.7 fs−1 on a 100 meter. Thus we think that it is wise to
consider a maximum velocity of 30 fs−1. On the figure here next, the
trajectory is the orange one. We can observe that it is very close
from the previous one (blue), however when there was no limit to
the velocity, the strategy was the take distance from segment 3 to
have the longest ”straight” path at the end and the accelerate with
maximal acceleration. With a maximal velocity value, it is no more
possible to act in this manner, therefore the runner run closer from
segment 3. With this additional constraint we get a optimal value of
T = 16.7439 seconds. We conclude that the constraint was not too
restrictive and didn’t impact much the optimal solution.
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In reality we can not decelerate as fast as we accelerate, so in order to improve again the realism of our model, we
have decided to consider a maximum deceleration value. We have considered that there is deceleration if the norm of
the velocity decreases between tj and tj+1. On the figure here above, the trajectory is the yellow one. The trajectory
seems logical : indeed the runner will have to decelerate mainly in the turns. We can see that the trajectory is nearly the
same than the previous case on segment 1, but the runner have to take a longer turn on the first base. This respects our
intuition. With this additional constraint we get a optimal value of T = 17.4814 seconds.

Finally we can directly see that the 3 feet rule is the most restrictive : the trajectory is the purple one. In the previous
cases, the strategy was to adopt a curved trajectory. Here because of the 3 feet constraint such a trajectory is not allowed,
however we can see that the runner will still adopt a curve trajectory on the corner which seems logical. In this last case
the optimal time to run a home run is T = 20.9966 seconds.

What we did from the beginning of this section is to add each time one more constraint to get closer to the reality.
Our model is then more and more constrained : the optimal solution of case i will always be a upper bound for case i + 1.
This is what we observe : the more constraints we have, the longer will it take to run a home run :

Case Optimal Time
maxAcceleration 16.5793
maxAcceleration + maxVelocity 16.7439
maxAcceleration + maxVelocity + maxDeceleration 17.4814
maxAcceleration + maxVelocity + maxDeceleration + 3feet 20.9966

4.1 Influence of the number of discretization points

In this subsection we will consider only the basic constraints to study the impact of
the number of discretization points on the optimal time obtained. We hope that these
results will converged as we said in subsection 3.2. We see that the optimal time tend
to stay around 16.579 seconds. Based on we we have said in subsection 3.2 and 3.3,
we can affirm that the optimal solution is in the interval [15.54, 16.5791] seconds.

n Optimal Time (s)
5 16.6580
10 16.5937
100 16.5793
1000 16.5792
10000 16.5791

4.2 Sensibility of our model to the maximum acceleration value
Again we consider here only the basic constraints. The aim of this subsection is to
have a look the the optimal time when we vary the maximum acceleration value from
2 to 22 fs−2 with a number of n = 50 discretization points. If we plot the path for
each of these values, we can remark that it stays the same : this is explain by the fact
that there is no maximum value on the velocity. Indeed if we increase the maximum
value of the acceleration limit, the runner will run the same path by quicker. If we
plot the log2 − log2 graph of the values obtained in the table. We see that all data
are on a line of steep -0.5. This explains the fact that the model is more sensible with
variations of amax where amax is small.
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amax (f/s2) Optimal Time (s)
2 37.0732
4 26.2147
6 21.4042
10 16.5796
14 14.0124
18 12.3577
22 11.1780
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4.3 Sensibility of our model to the maximum velocity value
In this subsection we will consider the basic constraints and the max-
imum velocity constraint. The parameters used are amax = 10 and
n = 50. The results are the following :

vmax (f/s) Opt. Time (s)
5 72.4744
10 36.9762
15 25.4904
20 20.0369
50 16.5796

We can analyse the graphical result and compare it to our intuition.
Evidently the quicker a player can run the less time he will take to
accomplish a home run. Moreover, the player acceleration is limited to
10 fs−2 then if he runs at 5 f/s he is able to stop completely in the
direction he was running and to run at 5 f/s in an orthogonal direction.
This is what exactly we see on the graph : the players that is limited
to 5 f/s will follow the line of the square : indeed he can take the turns
at maximum velocity. Based on the same idea, the higher will be the
maximum velocity, the less sharp the players will be able to take the
corners and the rounder will be his trajectorya. This is what we see on
the graph here next.

aIf we consider that he will run at maximum velocity. He has always the possibility
to run at lower velocity but this won’t lead to the optimal solution.

5 Conclusion
Our model is unfortunately not convex, thus all solutions are not guarantee to be globally optimal. However we simple
calculations we have been able to define an interval where the optimal solution belongs. With all the constraints the model
tends to be as close from the reality as possible. However it is always possible to make it even closer. For example we
could consider that the player has a push of adrenaline when he begins to run the last segment ! We could then consider
a higher maximum velocity like 35 fs−1. If we compute this situation with all other parameters identical as in section 4
we obtain an optimal time of 16.6178 seconds which is inferior to the case where we consider only one maximum velocity
value : 16.7439 seconds.

There is no end to this model and we could always endorse it. However the changes will less and less affect the optimal
time because we will focus only on details. We can then consider that the results in this report are a good approximation
of reality.
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